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1. Pure compromise dynamics



• Opinion measured by a continuum variable

1. Compromise: reached by pairwise interactions 

2. Conviction: restricted interaction range

• Minimal, one parameter model

• Mimics competition between compromise and 
conviction

The compromise process
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R Axelrod, J Conf. Res. 41, 203 (1997)
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• Given uniform initial (un-normalized) distribution

• Find final distribution

• Multitude of final steady-states

• Dynamics selects one (deterministically!)

Problem set-up
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• Dynamic treatment

Each individual interacts once per unit time

• Random interactions

Two interacting individuals are chosen randomly

• Infinite particle limit is implicitly assumed

• Process is galilean invariant

Set average opinion to zero

Further details

N →∞

�x� = 0

x→ x + x0



• Same master equation, restricted integration

Direct Monte Carlo simulation of stochastic process

Numerical integration of rate equations

Numerical methods, kinetic theory
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• Total population is conserved

• Average opinion is conserved

Two Conservation Laws
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Rise and fall of central party
0 < ∆ < 1.871 1.871 < ∆ < 2.724

Central party may or may not exist!



Resurrection of central party

Parties may or may not be equal in size 

2.724 < ∆ < 4.079 4.079 < ∆ < 4.956



Emergence of extremists

Tiny fringe parties (m~10-3)



Bifurcations and Patterns



• Periodic sequence of bifurcations

1. Nucleation of minor cluster branch

2. Nucleation of major cluster brunch

3. Nucleation of central cluster

• Alternating major-minor pattern

• Clusters are equally spaced

• Period L gives major cluster mass, separation

Self-similar structure, universality

x(∆) = x(∆) + L L = 2.155



How many political parties?

•Data: CIA world factbook
•120 countries with multi-party parliaments
•Average=5.8; Standard deviation=2.9

number of parties
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• Masses are periodic

• Major mass

• Minor mass

Cluster mass

m(∆) = m(∆ + L)

M → L = 2.155

m→ 3× 10−4

gaps?Why are the minor clusters so small?



• Minor mass vanishes

• Universal exponent

Scaling near bifurcation points

L-2 is the small parameter
explains small saturation mass

m ∼ (∆−∆c)α

α =

�
3 type 1
4 type 3



• Integrable for                                 

• Final state: localized

• Rate equations in Fourier space

• Self-similar collapse dynamics

The Inelastic Maxwell Model, EB & PL Krapivsky, Lecture Notes in Physics 624, 65 (2003)  

Consensus dynamics
∆ < 1/2

�x2(t)� = �x2(0)� e−∆t

P∞(x) = 2∆ δ(x)

Pt(k) + P (k) = P 2(k/2)

Φ(z) ∝
�
1 + z2

�−2
z = x/

�
�x2�



• Rate of transfer from minor cluster to major cluster

• Process stops when

• Final mass of minor cluster

Heuristic derivation of exponent

dm

dt
= −m M m ∼ � e−t

x ∼ e−tf /2 ∼ � �x2� ∼ e−t

m(∞) ∼ m(tf ) ∼ �3 α = 3

• Perturbation theory
• Major cluster
• Minor cluster

∆ = 1 + �
x(∞) = 0
x(∞) = ±(1 + �/2)



• Linear stability analysis

• Fastest growing mode

• Traveling wave (FKPP saddle point analysis)

Pattern selection

P − 1 ∝ ei(kx+wt) =⇒ w(k) =
8
k

sin
k

2
− 2
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dw

dk
=⇒ L =

2π

k
= 2.2515

Wavelength obtained analytically!

Patterns induced by wave propagation from boundary
However, emerging period is different
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van Saarloos 03
scheel 10

Lnum = 2.155



•Compromise process

•Master equation

•Simplest example: 6 states

•Symmetry + normalization:

•Two-dimensional problem

Isolated fixed points, lines of fixed points
Initial condition determines final state

Discrete opinions

P2P0 P1P2 P1 P0

P0 + P1 + P2 = 1(n− 1, n + 1)→ (n, n)

dPn

dt
= 2Pn−1Pn+1 − Pn(Pn−2 + Pn+2)



L = 5.67• Dissipative system, volume contracts

• Energy (Lyapunov) function exists

• No cycles or strange attractors

• Uniform state is unstable (Cahn-Hilliard)

Discrete opinions

Pi = 1 + φi φt + (φ + aφxx + b φ2)xx

Discrete case yields useful insights



• Linear stability analysis

• Fastest growing mode

• Traveling wave (FKPP saddle point analysis)

Pattern selection

Again, wavelength can be obtained analytically

dw

dk
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v =
dw

dk
=

Im[w]

Im[k]
=⇒ kselect = k∗ −

w∗
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L∗ = 5.671820
L∗ = 5.311086



I. Conclusions

• Clusters form via bifurcations

• Periodic structure

• Alternating major-minor pattern

• Central party does not always exist

• Power-law behavior near transitions

• Pattern selection understood



I. Outlook

• Gaps
• Role of initial conditions, classification
• Role of spatial dimension, correlations
• Disorder, inhomogeneities
• Tiling/Packing in 2D
• Discord dynamics (seceder model, Halpin-Heally 03)  

Many open questions



1I. Noisy compromise dynamics



• Diffusion: Individuals change opinion spontaneously

• Adds noise (“temperature”)

• Linear process: no interaction

• Mimics unstable, varying opinion

• Influence of environment, news, editorials, events

Diffusion (noise)

n
D−→ n± 1

or



•Compromise: reached through pairwise interactions

•Conserved quantities: total population, average opinion

•Probability distribution Pn(t)

•Kinetic theory: nonlinear rate equations

Direct Monte Carlo simulations of stochastic process

Numerical integration of rate equations

(n− 1, n + 1)→ (n, n)

Rate equations

dPn

dt
= 2Pn−1Pn+1 − Pn(Pn−2 + Pn+2) + D(Pn−1 + Pn+1 − 2Pn)



• Initial condition: large isolated party

•Steady-state: compromise and diffusion balance

•Core of party: localized to a few opinion states

•Compromise negligible for n>2

Single-party dynamics

Pn(0) = m(δn,0 + δn,−1)

DPn = Pn−1Pn+1

P0 = m P1 = D P2 = D2m−1

Party has a well defined core



The tail
• Diffusion dominates outside the core 

• Standard problem of diffusion with source

• Tail mass

• Party dissolves when 

Party lifetime grows dramatically with its size

dPn

dt
= D(Pn−1 + Pn+1 − 2Pn) P � D

Pn ∼ m−1Ψ(n t−1/2)

Mtail ∼ m−1t1/2

Mtail ∼ m =⇒ τ ∼ m4



n t−1/2

Core versus tail

Party height=m
Party depth~m-1

Self-similar shape
Gaussian tail

Pn

n

mPn

m = 103

m

m−1



Qualitative features
• Exists in a quasi-steady state
• Tight core localized to a few sites
• Random opinion changes of members do not 

affect party position
• Party lifetime grows very fast with size
• Ultimate fate of a party: demise
• Its remnant: a diffusive cloud
• Depth inversely proportional to size, the larger 

the party the more stable



m<

Two party dynamics
• Initial condition: two large isolated parties

• Interaction between parties mediated by diffusion

• Boundary conditions set by parties depths

• Steady state: linear profile

0 = Pn−1 + Pn+1 − 2Pn

Pn(0) = m> (δn,0 + δn,−1) + m< (δn,l + δn,l+1)
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Merger
• Steady flux from small party to larger one

• Merger time

• Lifetime grows with separation (“niche”)

• Outcome of interaction is deterministic

• Larger party position remains fixed throughout 
merger process

Small party absorbed by larger one

J ∼ 1
l

�
1

m<
− 1

m>

�
∼ 1

lm<

T ∼ m<

J
∼ lm2

<
n

P

J = −DPn



n

Merger: numerical results

Pn Pn

n



Multiple party dynamics

• Initial condition: large isolated party

•Linear stability analysis

•Growth rate of perturbations

•Long wavelength perturbations unstable

P=1 stable only for strong diffusion D>Dc=2

Pn(0) = randomly chosen number in [1− � : 1 + �]

Pn − 1 ∼ eikn+λt

λ(k) = (4 cos k − 4 cos 2k − 2)− 2D(1− cos 2k)

λ

k

k < k0 cos k0 = D/2

k0



Strong noise (D>Dc)

• Regardless of initial conditions

• Relaxation time

No parties, disorganized political system

Pn → �Pn(0)�

λ ≈ (Dc −D)k2 =⇒ τ ∼ (D −Dc)−2



Weak noise (D<Dc): Coarsening

• Smaller parties merge into large parties 

• Party size grows indefinitely

• Assume a self-similar process, size scale m

• Conservation of populations implies separation 

• Use merger time to estimate size scale

• Self-similar size distribution

Lifshitz-Slyozov coarsening

l ∼ m

t ∼ lm2 ∼ m3 =⇒ m ∼ t1/3

Pm ∼ t−1/3F (m t−1/3)



Coarsening: numerical results

•Parties are static throughout process
•A small party with a large niche may still          
outlast a larger neighbor!

Pn

n t

m



Three scenarios

early lateintermediate

D = 0

D < Dc

D > Dc



II. Conclusions
• Isolated parties

-Tight, immobile core and diffusive tail
-Lifetime grows fast with size

• Interaction between two parties
-Large party grows at expense of small one
-Deterministic outcome, steady flux

• Multiple parties
-Strong noise: disorganized political system, no parties
-Weak noise: parties form, coarsening mosaic
-No noise: pattern formation
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